ORIGINAL ARTICLE |
|
Year : 2020 | Volume
: 7
| Issue : 1 | Page : 56-60 |
|
Antimicrobial resistance pattern of bacterial isolates and genetic resistance determinants of carbapenemase producers in bloodstream infections
Lipika Jena, Bichitrananda Swain, Swati Jain
Department of Microbiology, Institute of Medical Sciences and SUM Hospital, Bhubaneswar, Odisha, India
Correspondence Address:
Swati Jain 142, Doctors Enclave, Campus.3, Institute of Medical Sciences and SUM Hospital, Kalinga Nagar, Bhubaneswar - 751 003, Odisha India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/cjhr.cjhr_22_19
|
|
Introduction: Bloodstream infection (BSI) continues to be a significant cause of disease and death in hospitalized patients worldwide. These are among the most common healthcare-associated infections with a mortality rate of 20%–50%. The emergence of multidrug resistance among the organisms causing BSI is of great concern. Objectives: The study was undertaken in a medical intensive care unit of a tertiary care hospital in Eastern India to evaluate the spectrum of pathogens causing BSI, their antimicrobial resistance patterns and carbapenemase enzyme production using polymerase chain reaction (PCR). Materials and Methods: A total of 550 blood samples from clinically suspected cases of BSIs were studied from July 2016 to June 2018. Blood samples were inoculated and incubated in BacT/ALERT (BioMerieux) system. Identification and antibiotic susceptibility testing was conducted in Vitek-2 (BioMerieux) as per the Clinical Laboratory Standards Institute guidelines. Methicillin-resistant Staphylococcus aureus (MRSA) and β-lactamase production were also noted in the Vitek-2 method. All Gram-negative isolates were studied for carbapenemase production by the genotypic method using PCR. Results: Of 550 samples, 116 samples yielded the growth of various bacterial isolates. Of these, 54 (47%) were Gram-positive organisms and 62 (53%) were Gram-negative organisms. S. aureus was the most common organism isolated followed by Klebsiella pneumoniae. MRSA was observed in 66.7% of S. aureus isolates. Among Gram-negative isolates, 43.5% were found to be β-lactamase producers and 66.1% were carbapenemase producers. Most of the carbapenemase producers were encoded by the OXA gene (58%). Conclusion: This study emphasizes the importance of antibiotic policy and its stringent application, which will eventually help us to control the menacing rise in antimicrobial resistance.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|