• Users Online: 433
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2015  |  Volume : 2  |  Issue : 3  |  Page : 199-202

Opportunistic infections in relation to CD4 counts in human immunodeficiency virus seropositive patients in a tertiary care hospital in North India


Department of Microbiology, Christian Medical College, Ludhiana, Punjab, India

Date of Web Publication12-Jun-2015

Correspondence Address:
Dr. Ekta Mala
C/O Microbiology Department, Christian Medical College, Brown Road, Ludhiana, Punjab
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2348-3334.158670

Rights and Permissions
  Abstract 

Context: The human immunodeficiency virus (HIV) seropositive patients have decreased immunity predisposing them to various opportunistic infections (OI). The CD4 counts in the patient can be taken as a marker to evaluate the immune status. Aim: The aim of the study is to screen the HIV seropositive patients for OI in relation to their CD4 counts in a tertiary care hospital. Settings and Design: The present study was prospective in design conducted in the Department of Microbiology in a tertiary care hospital. Materials and Methods: A total of 80 HIV-seropositive patients, admitted from a period of 1΍ years were screened for OI. CD4 counts were done in all patients and measured by flow cytometry. Sputum and bronchoalveolar lavage samples were tested for tuberculosis and pneumocystis carinii pneumonia (PCP); oral candidiasis was detected by potassium hydroxide preparation; stool samples were subjected to direct and ether concentration method and stained for opportunistic stool infections; serum samples were tested for toxoplasmosis and cytomegalovirus (CMV) infection by enzyme-linked immunosorbent assay. Cerebrospinal fluid samples were tested for cryptococcosis. Results: A total of 38 (47.5%) patients were positive for OI. There were 13.6% patients presenting with infections having a CD4 count of below 200 cells/μL of whom, oral candidiasis (40.8%), cryptosporidiosis (23.68%), tuberculosis (5.92%), and CMV immunoglobulin M (IgM), PCP, isosporiasis and cryptococcosis were (2.96%). Conclusions: Majority of OI are present in patients with HIV with a low CD4 count, which emphasizes the need for monitoring such patients.

Keywords: HIV, CD4 counts, OI


How to cite this article:
Mala E, Oberoi A. Opportunistic infections in relation to CD4 counts in human immunodeficiency virus seropositive patients in a tertiary care hospital in North India. CHRISMED J Health Res 2015;2:199-202

How to cite this URL:
Mala E, Oberoi A. Opportunistic infections in relation to CD4 counts in human immunodeficiency virus seropositive patients in a tertiary care hospital in North India. CHRISMED J Health Res [serial online] 2015 [cited 2019 Sep 23];2:199-202. Available from: http://www.cjhr.org/text.asp?2015/2/3/199/158670


  Introduction Top


Human immunodeficiency virus (HIV) is a retrovirus, belonging to the lentivirus subgroup. It is the etiological agent of AIDS, which is a global pandemic. The virus is highly mutagenic in nature and the antigenic variations present, makes it survive in the human body. The mode of contact of the virus is through blood and blood stained body fluids. On entering the bloodstream, it acts primarily on the CD4 (helper/inducer) T lymphocyte. The binding of the virus to the receptor is by the envelope glycoprotein gp 120. The co-receptor molecule is the CXCR 4 for T-cell-tropic HIV strains and CCR 5 for the macrophage - tropic strains. [1] CD4 molecule is a 55 kDa glycoprotein, and it is found predominantly on helper T lymphocytes and are also expressed on monocytes, macrophages and dendritic or langerhans cells. HIV envelope glycoprotein 120 (gp 120) binds to a portion of major histocompatibility complex binding site of CD4 molecule. When CD4 counts fall to <200 cells/μL, these patients become susceptible to opportunistic infections (OI). [2] HIV infection leads to low levels of CD4 counts making the body more susceptible to OI. This leads to increased morbidity and mortality of the patients, which is actually due to the OI rather than HIV itself. [3] When CD4 T-cell counts decline below a critical level of 200 cells/μL, the cell-mediated immunity gets declined, and OI's appear. [4] Therefore, it is important to identify the specific pathogen to manage such patients. [5] Currently, no vaccines for HIV/AIDS have been approved for use, with many clinical trials still undergoing. [6] This study was therefore undertaken to evaluate the correlation between the patients CD4 counts and the presence of various OI's in patients with HIV.


  Aims and Objectives Top


To screen HIV seropositive patients for OI's in relation to their CD4 counts in a tertiary care hospital in North India.


  Materials and Methods Top


This prospective study was conducted in the Department of Microbiology in a tertiary care center in North India. It was a 18 months study conducted from September 2012 to March 2014. A total of 80 HIV-seropositive patients were estimated for OI and their CD4 counts. Universal precautions were adopted for processing every sample. All the samples were collected under aseptic conditions.

The CD4 counts were measured by Alere pima CD4 counter machine that works on the principle of flow cytometry. A fresh 2 ml venous ethylenediaminetetraacetic acid sample was processed for the same.

Sputum and bronchoalveolar lavage (BAL) samples were tested for tuberculosis, and Pneumocystis carinii pneumonia (PCP). To diagnose tuberculosis, preferably early morning expectorated sputum sample was collected in a sterile wide-mouthed universal container. The sample was subjected to concentration by using Petroff's method by using standard microbiological techniques. [7] The concentrated sample was stained by Ziehl Nelson technique and cultured on Lowenstein Jensen media. Positive growth was confirmed by performing biochemicals - Tween 80 hydrolysis and Nitrate reduction test.

To diagnose PCP, sputum sample, preferably induced sputum sample after 3% normal saline nebulization and/or BAL samples were subjected to staining by Gomori's silver methanamine stain by standard microbiological techniques. [8] The oocyst of Pneumocystis carinii (jirovecii) was seen as brown to black colored spherical structures, 8-10 mm in size against a green background.

Oral candidiasis was detected by potassium hydroxide (KOH) preparation. Oral scrapings were taken for diagnosing the same, present as white mucosal patches. The material was put for digestion in 10% KOH, and wet mount smears were made to see oval budding yeast-like cells. The culture was done on Sabrauds dextrose agar with and without antibiotic at 37΀ and 22΀. A Gram-staining was done from the growth to see Gram-positive budding yeast-like cells. Standard microbiological techniques were followed for the same. [9]

The stool OI's like Cryptosporidiosis, Isosporiasis and Cyclosporiasis were diagnosed by modified Ziehl Nelson staining. The stool samples were collected in a wide mouthed universal container. Direct smears and smears after ether concentration method were prepared using standard microbiological techniques. [10] Acid-fast pink colored oocyst was to be seen with respective structures and sizes. [11]

Serum samples were tested for Toxoplasmosis and Cytomegalovirus (CMV) infection for both acute (immunoglobulin M [IgM]) and chronic stage (immunoglobulin G [IgG]).The test was performed by enzyme-linked immunosorbent assay by Dia. ProKit produced by Diagnostic Bioprobes Srl. The sensitivity and specificity of the both the kits were >98%.

Cryptococcosis was detected by processing the cerebrospinal fluid (CSF) sample. India ink preparation was made to demonstrate negative staining of the capsulated organism. [12] A latex agglutination test was done using cryptococcal antigen in CSF using Pastorex™ Cryptoplus 61747 Agglutination technique to detect capsular polysaccharide. It is a qualitative and semi -quantitative test that uses a simple agglutination technique to detect the capsular polysaccharide of Cryptococcus neoformans, glycuronoxylomannan (GXM), in biological fluids. This test uses latex particle coated with an anti - GXM monoclonal antibody. The major component of the capsule is GXM. The agglutination resulting from the reaction between the particles and GXM is visible to the naked eye. The sensitivity limit is 50 ng/ml of serum.


  Results Top


In a total of 80 patients, 38 (47.5%) HIV-positive patients screened were found to have OI, [Figure 1]. There were 13.6% patients presenting with infections having a CD4 count below 200 cells/μL. There were 4.0% patients with CD4 counts between 200 and 499 cells/μL and 0.49% patients with CD4 counts above 500 cells/μL. The following OI's were present on testing. Oral candidiasis (40.8%), Cryptosporidiosis (23.68%), Tuberculosis (5.92%), and CMV IgM, PCP, Isosporiasis and Cryptococcosis were (2.96%) [Figure 2]. Oral candidiasis was the most common infection found in these patients followed by opportunistic stool infection, Cryptosporidiosis.
Figure 1: Positive cases for opportunistic infections

Click here to view
Figure 2: Results

Click here to view



  Discussion Top


In our study, out of the total 80 patients, 38 HIV positive tested (47.5%) had OI. The patients in our study were hospitalized patients and would have been on antiretroviral treatment and prophylactic therapy. Therefore, the number of patients presenting in our study with OI's are less in number. Cases that are newly diagnosed or taken directly from the community may probably present with decreased immunity, making the patients more vulnerable to OI. Among these positive patients presenting with OI's majority had a CD4 count of below 200 cells/μL that is, 13.6%. This is in accordance to a study by Kulkarni et al. who showed that the majority of the patients presenting with OI had a CD4 count of below 200 cells/μL. [13] Damtie et al. also concluded that the prevalence of OI was found to be highest in patients with a CD4 count of <200 cells/μL and that there was a strong association between the two parameters. [14] Oral candidiasis was the most common infection found in these patients followed by opportunistic infection, Cryptosporidiosis in the stool. In a study by Chakraborthy et al. Oral candidiasis was the commonest OI present in 32% patients with CD4 counts of <200 cells/μL. [15] Gableri et al. also found oral candidiasis to be the most common OI in patients with CD4 count of <200 cells/μL. [16] In a study by Kulkarni et al. on 137 HIV patients, Cryptosporidiosis was the most commonly observed intestinal stool parasitic infection (54%). These patients also presented with CD4 counts of <200 cells/μL. [13] This is in accordance to a study done by Tuli et al. who showed maximum parasitic stool isolation in patients with CD4 count of <200 cells/μL. [17] In a study by Dhungel et al. in Nepal, tuberculosis (30%) and oral candidiasis (14%) were the most common OI's detected. [18] Studies have shown that there is a 5% incidence of tuberculosis found in HIV-infected patients. [19] In our study, tuberculosis was found in less number of cases. This might be due to the endemic nature of the disease in our country and prior treatment by antitubercular drugs. P.carinii is rarely documented in India. [20] In our study also the prevalence of PCP was less. In India, the incidence of 5% was reported by Lanjewar et al. [21] and NACO [22] had reported an incidence of 4%, in India. Since the majority of the patients were hospitalized and presented with low CD4 counts prophylactic septran therapy given would have been protective in nature. HIV coinfection with cryptococcosis is also prevalent in patients with low CD4 counts. [14] In our study, a low prevalence was found due to less number of positive cases and presenting illness of the patient. Acute infection with CMV was found to be less prevalent in our study (2.96%). As compared with the study by Akinbami et al., where a prevalence of 6.6%was found in patients with low CD4 counts. [23]


  Conclusions Top


Our study concludes that the majority of OI's are present in patients with low CD4 counts. Therefore, carefull search of these OI's in these patients is required.CD4 counts can act as a reliable disease prognostic marker. In patients with CD4 counts of <200 cells/μL, the need for monitoring, prophylaxis and cure of OI's is required.

 
  References Top

1.
Ananthnarayan R. Human immunodeficiency virus: AIDS. In: Paniker CK, editor. Text Book of Microbiology. 7 th ed. Chennai: Orient Longman Private Ltd.; 2005. p. 582-98.  Back to cited text no. 1
    
2.
Muller V, Mocroft A, Reiss P, Katlama C, Papadapoulos AI. Relations among CD4 lymphocyte count nadir, Antiretroviral therapy and HIV - 1 disease progression: Results from the EUROSIDA study. Ann Intern Med 1999;130:570-7.  Back to cited text no. 2
    
3.
Noor R, Morsalin M, Chakraborthy B. Reduction of CD4 count induces opportunistic infections in people living with HIV (PLHIV). Bangladesh J Med Sci 2014;13:285-91.  Back to cited text no. 3
    
4.
Cunningham AL, Donaghy H, Harman AN, Kim M, Turville SG. Manipulation of dendritic cell function by viruses. Curr Opin Microbiol 2010;13:524-9.  Back to cited text no. 4
    
5.
Ayyaari A, Sharma AK, Prasad KN, Dhole TN, Kishore J, Choudhary G. Spectrum of opportunistic infection in Human immunodeficiency virus (HIV) infected cases in tertiary care hospital. Indian J Microbiol 1999;17:78-80.  Back to cited text no. 5
    
6.
Preventive HIV Vaccines, AIDS info. (online). Available from: http://www.aidsinfo.nih.gov/vaccines. [Reviewed on 2006 May].  Back to cited text no. 6
    
7.
Watt B, Rayer A, Harris G. Mycobacterium. In: Collee JG, Fraser AG, Marrion BP, Simmons A, editors. Mackie and Mc Cartney Practical Medical Microbiology. 14 th ed. New Delhi: Churchill Livingstone; 2012. p. 329-41.  Back to cited text no. 7
    
8.
Lumsden WH, Burns S, Mcmillan A. Protozoa. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and Mc Cartney Practical Medical Microbiology, 14 th ed. New Delhi: Churchill Livingstone; 2012. p. 736-50.  Back to cited text no. 8
    
9.
Milne LJ. Fungi. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and Mc Cartney Practical Medical Microbiology. 14 th ed. New Delhi: Churchill Livingstone; 2012. p. 695-717.  Back to cited text no. 9
    
10.
Lumsden WH, Burns S, Mcmillan A. Protozoa. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and Mc Cartney Practical Medical Microbiology. 14 th ed. New Delhi: Churchill Livingstone; 2012. p. 721-54.  Back to cited text no. 10
    
11.
Chatterjee KD. Parasitiology: Protozoology and Helminthology. 13 th ed. New Delhi: CBS Publishers and Distributors Pvt. Ltd.; 2009. p. 135.  Back to cited text no. 11
    
12.
Milne LJ. Fungi. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and Mc Cartney Practical Medical Microbiology. 14 th ed. New Delhi: Churchill Livingstone; 2012. p. 698.  Back to cited text no. 12
    
13.
Kulkarni SV, Kairon R, Sane SS, Padmawar PS, Kale VA, Thakar MR, et al. Opportunistic parasitic infections in HIV/AIDS patients presenting with diarrhea by the level of immunosuppression. Indian J Med Res 2009;130:63-6.  Back to cited text no. 13
[PUBMED]    
14.
Damtie D, Yismaw G, Woldeyohannes D, Angaw B. Common opportunistic infections and their CD4 cell correlates among HIV-infected patients attending at antiretroviral therapy clinic of Gondar University Hospital, Northwest Ethiopia. BMC Res Notes 2013;6:534.  Back to cited text no. 14
    
15.
Chakraborty N, Mukherjee A, Santra S, Sarkar RN, Banerjee D, Guha SK, et al. Current trends of opportunistic infections among HIV-seropositive patients from Eastern India. Jpn J Infect Dis 2008;61:49-53.  Back to cited text no. 15
    
16.
Gabler IG, Barbosa AC, Velela RR, Lyon S, Rosa CA. Incidence and anatomic localization of oral candidiasis in patients with AIDS hospitalized in a public hospital in Belo Horizonte, MG, Brazil. J Appl Oral Sci 2008;16:247-50.  Back to cited text no. 16
    
17.
Tuli L, Gulati AK, Sundar S, Mohapatra TM. Correlation between CD4 counts of HIV patients and enteric protozoan in different seasons-an experience of a tertiary care hospital in Varanasi (India). BMC Gastroenterol 2008;8:36.  Back to cited text no. 17
    
18.
Dhungel BA, Dhungel KU, Easow JM, Singh YI. Opportunistic infection among HIV seropositive cases in Manipal Teaching Hospital. Pokhara, Nepal. Kathmandu Univ Med J 2008;6:335-9.  Back to cited text no. 18
    
19.
Khedkar DT, Chitnis UB, Bhawalkar JS, Mamulwar MS. RNTCP - Evolution, achievements and challenges. Med J DY Patil Univ 2014;7:5-12.  Back to cited text no. 19
  Medknow Journal  
20.
Singh A, Bairy I, Shivananda PG. Spectrum of Opportunistic infection in AIDS. Indian J Med Sci 2003;57:16-21.  Back to cited text no. 20
[PUBMED]  Medknow Journal  
21.
Lanjewar DN, Duggal R. Pulmonary pathology in patients with AIDS: An autopsy study from Mumbai. HIV Med 2001;2:266-71.  Back to cited text no. 21
    
22.
NACO. HIV/AIDS surveillance in India. In: Specialist′s training and reference module. New Delhi: NACO; 2000. p. 12-7.  Back to cited text no. 22
    
23.
Akinbami AA, Rabiu KA, Adewunmi AA, Wright KO, Dosunmu AO, Adeyemo TA, et al. Seroprevalence of cytomegalovirus antibodies amongst normal pregnant women in Nigeria. Int J Womens Health 2011;3:423-8.  Back to cited text no. 23
    


    Figures

  [Figure 1], [Figure 2]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Results
Discussion
Conclusions
Aims and Objectives
Materials and Me...
References
Article Figures

 Article Access Statistics
    Viewed2276    
    Printed33    
    Emailed0    
    PDF Downloaded234    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]