• Users Online: 2275
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2014  |  Volume : 1  |  Issue : 3  |  Page : 140-144

Bacterial and antimicrobial resistance profile of bloodstream infections: A hospital-based study

1 Department of Microbiology, Mayo Institute of Medical Sciences, Barabanki, Uttar Pradesh, India
2 Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
3 Department of Microbiology, Gold Field Institute of Medical Sciences and Research, Faridabad, Haryana, India

Correspondence Address:
Amit Kumar Singh
Department of Microbiology, Mayo Institute of Medical Sciences, Barabanki - 225 003, Uttar Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2348-3334.138881

Rights and Permissions

Background: Bloodstream infections (BSIs) are one of the serious infections causing significant morbidity and mortality among hospitalized patients. Large numbers of cases of treatment failure are being reported due to emergence of drug resistance. Early microbiological diagnosis and determination of antimicrobial susceptibility pattern have been shown to improve treatment outcome. The present study was aimed to determine the bacterial and antimicrobial resistance profile of BSIs in a major tertiary care hospital. Materials and Methods: Blood samples in brain heart infusion (BHI) broth submitted to the microbiology laboratory for culture and sensitivity during a period of 1 year were included in the study. Samples were processed as per standard protocol of laboratory for isolation and identification. The antimicrobial susceptibility profile of bacterial isolates was determined by the disc diffusion method as per Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Out of 4862 blood samples, 494 (10.16%) isolates were obtained. Of these isolates, 256 (51.82%) were Gram-negative and 230 (46.56%) were Gram-positive bacteria. The most commonly identified organism was coagulase-negative Staphylococcus (CoNS) (25.91%) followed by Acinetobacter spp. (20.24%) and Escherichia coli (14.98%). Gram-negative bacteria showed a higher rate of resistance as compared with Gram-positive bacteria. Conclusion: High prevalence of antimicrobial resistance was noted in this study, especially in Gram-negative bacteria. Hence, appropriate treatment of BSIs should be based on the current knowledge of bacterial resistance profile as provided by microbiology laboratory. It would be advisable for the clinicians to mandate antimicrobial sensitivity testing for suspected cases of BSIs.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded395    
    Comments [Add]    
    Cited by others 1    

Recommend this journal